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Magnetic Monopoles and Non-Abelian Gauge Theories 

William J .  M a r c i a n o  1 

Department of Physics, The Rockefeller University, New York, New York 10021 

We review some properties of magnetic monopoles in non-Abelian gauge 
theories. Removal of Dirac string singularities and generalizations of the 
Wu-Yang solution that follow from this procedure are described. A discus- 
sion of the possible relevance of monopoles in strong interaction models and 
their role in quark confinement schemes is given. The magnetic monopole 
soliton discovered by 't Hooft and Polyakov, the first order formalism 
developed by Bogornolny, and extensions of these ideas are illustrated. 

1. I N T R O D U C T I O N  

During the last few years, we have witnessed an upsurge in the number 
of  research papers dealing with magnetic monopoles. The extent of  this 
renewed interest is well illustrated by Richard Carrigan's recent bibliography 
(1977) covering 1973 through 1976 which describes more than 300 publica- 
tions on the subject of  magnetic monopoles. A primary impetus for many of 
the theoretical investigations was provided by 't Hoof t  and Polyakov's dis- 
covery of a magnetic monopole soliton in a spontaneously broken non-Abelian 
gauge theory ( ' t  Hooft,  1974; Polyakov, 1974). Their work pointed out the 
natural manner in which magnetic monopoles make their appearance in these 
theories and encouraged further exploration of this phenomenon. 

Current studies of  magnetic monopoles in non-Abelian gauge theories 
derive much of their motivation from two sources. First, if magnetic mono- 
pole solitons occur in a unified gauge theory of the weak and electromagnetic 
interactions, and such a theory correctly describes the real world, then they 
will be experimentally accessible albeit at extremely high energies. Should 
this be the case, we would like to learn as much about these soliton field 
configurations as possible. Second, there may be a connection between 
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magnetic monopoles and the anticipated quark confinement mechanism. Such 
"magnetic" monopoles would probably be counterparts of  some charge other 
than electric charge and would therefore be expected to have little connection 
with the magnetic monopoles sought by experimentalists. 2 

The subject of  non-Abelian magnetic monopoles has grown far too 
extensive for us to completely review here. Our goal is to explain a few 
specific properties of  these monopoles and outline some developments in this 
field. We focus on the following topics: In Section 2 we describe the removal 
of Dirac string singularities in non-Abelian gauge theories. This procedure 
yields field configurations that are singular only at the origin and are natural 
generalizations of the Wu-Yang solution (Wu and Yang, 1969) to the 
Yang-Mills field equations. Then in Section 3 we discuss a superconductor 
model of confinement and speculate on the occurrence of a similar phenom- 
enon in quantum chromodynamics. The magnetic monopole soliton of 
't Hooft  and Polyakov is reviewed in Section 4. There we also describe the 
first-order formalism of  Bogomolny (1976) and point out its correspondence 
with the self-duality condition for a pure Yang-Mills theory in four Euclidean 
dimensions. Finally, in Section 5 we outline some generalizations and 
extensions of  these ideas. 

2. STRING SINGULARITY REMOVAL 

Consider a pure SU(2) Yang-Mills theory described by the Lagrangian 
density 

~q~(x) = - � 8 8  a"~ a = 1, 2, 3 group index (2.1a) 

F~v = ~ .A~  a - ~ A .  ~ + e~abcA~,bA~ c (2.1b) 

and the classical field equations which follow from Hamilton's principle of 
least action, 

DUF~,~ - O"FF,~ + e ,~~  = 0 (2.2) 

where D u is the covariant derivative. Because of the nonlinear term in (2. lb), 
this theory describes a self-interacting three-component gauge field A~ ~. When 
two of the gauge field components are set equal to zero, A, 1 = Au 2 = 0, the 
nonlinearity disappears, and in terms of A, 3 this theory looks just like the 
Abelian model [ordinary U(1) electrodynamics]; therefore this condition is 
often called the Abelian gauge. 

I f  we embed a Dirac string in this Abelian gauge 

A. 1 = A. 2 = 0 A0 s = 0 (2.3a) 

g sin 0 
Ai 3 = - g ( 1  - cos0)Oi~ = r(1 + cos0) ( - s i n ~ ' c ~  (2.3b) 

2 We will often follow the convention of using "magnetic" to describe fields which have 
no connection with ordinary electrodynamics. 
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it gives rise to the radial magnetic field of  a point  monopole  with magnetic 
charge g. Tha t  is, 

B~: = B~ 2 = 0 B~ ~ = gxdr  3 (for the Dirac string) (2.4a) 

where 

B~ a = �89 F~j~ ~123 = 1 . (2.4b) 

(Note  magnetic fields are not  gauge-invariant concepts for non-Abelian 
theories.) In  deriving this result and in the manipulations to follow we use: 
x x = - x :  = r sin 0 c o s 4  x 2 = - x 2  = r sin 0 s i n 4  x 3 = - x a  = r cos 0 

1 
~ r  = - xdr  = xi/r  a~4 = r sin 0 ( -  sin 4, cos 4, 0) 

(2.5) 

1 (cos 0 cos 4, cos 0 sin 4, - sin 0) ~0 = r 

In  the real Abel ian theory a Dirac string can be moved a round  by local 
gauge t ransformations;  but  it cannot be removed. However,  the class o f  
non-Abelian gauge transformations is much larger. Under  a local SU(2) gauge 
t ransformation Au ~ transforms according to 

A~ = A ~ % ~ / 2 - ~  U A ~ U  -~ + i UauU_ ~ (2.6a) 
e 

u = exp (2 .6b)  

where z ~ are the 2 x 2 Pauli matrices. A Dirac string with g = n/e, n = 

integer, can be removed by the s ingular  gauge t ransformation (singular in 
that  Ua u U -  ~ contains a string singularity) 

( 0 " 0 - " ~ t  0 
cos ~ - s m  ~ e 

U = . 0 i~  (2.7) 
\ sin : e COS : / 

(n must  be an integer because of  the requirement o f  single,valuedness in 4.) 
This yields for the gauge transformed fields (Bais, 1976) 

A~ ~ n 1 = - cos 0 sin 0 cos n4~4  + - sin n4O~O 
e e 

A~ 2 n 1 = - cos 0 sin 0 sin n40~4 - - cos n40~O (2.8) 
e e 

A~ 3 = _ n  sin2 0~4 
e 
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This general result was obtained by Bais; we will comment further on it in a 
moment. 

Let us now compare the Dirac relationship between magnetic charge and 
the minimum electric charge Qmtn with the string removal condition 

n 

g - 2Qmin 
(Dirac quantization condition) (2.9a) 

n g = - (string removal condition) (2.9b) 
e 

I f  e is the minimum charge in the theory, then these conditions differ by a 
factor of 2 and allowed Dirac monopoles with g = (2n + 1)/2e cannot have 
their strings removed. However, if doublet representations couple to the gauge 
fields, then their charge e/2 becomes Qmin and both conditions are identical. 
These two possibilities differentiate SO(3) and SU(2) gauge theories (a dis- 
tinction in global properties); so only in the latter instance can all Dirac 
monopoles have their strings removed. 

For  the case n = 1, (2.8) has a particularly simple form: 

A~ ~ = ~ j x J / e r  2 (Wu-Yang.solution) (2.10) 

This field configuration was shown by Wu and Yang to be a static solution 
of the field equations DUFf,  = 0 before any correspondence with monopoles 
was known (Wu and Yang, 1969). Now we note that Bais' configurations in 
(2.8) are all solutions to the field equations (except at the origin) and therefore 
represent the natural generalization of  the Wu-Yang solution. The energy 
density for these solutions is 

I n  2 1 
~(x) = 1 r -=~J  = (2.11) 

~ J - -  2 e 2 r 4 

so they all have infinite energy because of their singular behavior at the origin. 
We shall see in Section 3 how this is remedied by the ' t  Hooft-Polyakov 

monopole. 

3. QUARK CONFINEMENT AND MAGNETIC M O N O P O L E S  

To explain our inability to observe free quarks, the concept of  quark 
confinement has been advanced (Marciano and Pagels, 1978). ~ The basic idea 
is that quarks are trapped inside hadrons from which there is no escape. A 
linear binding potential between constituent quarks is believed to be responsible 
for this permanent enslavement and indeed such a potential leads to an 

a This review covers in detail many of the topics mentioned in this paper and contains 
an extensive list of references. 
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Meson Boryon 

Fig. 1. String picture of mesons and baryons. 

extremely good description of the observed charmonium spectrum (Eichten, 
1976). When the principle of confinement is combined with the phenomeno- 

logically successful dual string model (Scherk, 1975), the following picture of 
hadrons emerges: Mesons and baryons seem to be s t r ing-and bola-like 
configurations with quarks at their ends as illustrated in Figure 1. Any 
attempt to liberate a single quark is futile, since at some separation distance 
it becomes energetically more favorable to create a quark-antiquark pair 
from the vacuum, thereby yielding an additional hadron rather than for the 
splitting process to continue. A pictorial description of this scenario is given 
in Figure 2. 

Having briefly outlined the principle of quark confinement, we may 
ask, do any field theories exhibit such a phenomenon ? The answer is yes. 
Two-dimensional (1 space and 1 time) gauge theories like the Schwinger 
model and two-dimensional Q.C.D. possess precisely the properties we 
described (Marciano and Pagels, 1978). Quark trapping occurs and the 
fundamental fermions (quarks) of these theories are absent from their 
physical state spectrum. However, in two dimensions the Coulomb potential 
is linear and thus automatically confining; so intimations about our four- 
dimensional world from these models should be suspect. In any case, if we 
accept the existence of magnetic charge, then there is a nice physical example 
of confinement in four dimensions, the superconductor example of Nambu 
(1974) and Parisi (1975). 

It is well known that a superconductor placed in an external magnetic 
field exhibits a Meissner effect, that is, the superconductor expels the magnetic 
field. However, in type II superconductors when the magnetic field exceeds 

s o m e  critical value He, vortices of quantized magnetic flux puncture the 
superconductor as illustrated in Figure 3. I f  a magnetic monopole is placed 
iriside this superconductor, all of its magnetic flux rather than spreading 
radially outward is funneled into a vortex which finds its way to the surface, 

Fig. 2. An unsuccessful attempt to free a quark. The energy expended merely goes into 
creating another bound state meson. 
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Fig. 3. The Meissner effect in type I I  superconductors. For / I  > He vortices of magnetic 
flux puncture the superconductor. 

as shown in Figure 4a. A magnetic monopole and antimonopole inside the 
superconductor will have their connecting magnetic flux squeezed into a 
stringlike configuration (see Figure 4b) which gives rise to an attractive linear 
potential between these two objects. If these monopoles are identified with 
quarks, then this example provides a model for quark confinement, "magnetic 
confinement." But can this kind of magnetic confinement be realized in a 
relativistic field theory ? The answer is yes. Nielsen and Olesen showed that 
magnetic flux vortices naturally arise in the Abelian Higgs model as solutions 
to the classical equations of motion (Nielsen and Olesen, 1973). (Indeed, in 
the static limit the field equations of this model become exactly the Ginsberg -~ 
Landau equations of superconductivity with the Higgs scalar field replacing 
the order parameter.) They carry quantized amounts of flux qb = 2~-n/e, 
n = integer, where e is the electric charge of the scalar field that sponta- 
neously breaks the local U(1) gauge invariance of this model. Notice that the 
quantized flux of these vortices is exactly that of Dirac monopoles; so the 
magnetic confinement mechanism just described can certainly arise in this 
model, if quarks are endowed with magnetic charge. We will not elaborate 
further on this model; the interested reader is referred to the literature 
(Marciano and Pagels, 1978; Englert, 19774). 

If instead of considering the Abelian Higgs model, one follows Mandel- 
stain's lead (1975) and examines an SU(3) gauge theory broken only by 
Higgs scalars in representations with zero triality (octets, decouplets, etc.), 
then only vortices with flux + 2zr/e or + 4rr/e, where e is the gauge coupling 
constant, exist in the theory. The occurrence of only these specific values of 

These lectures present a nice detailed study of confinement schemes and contain many 
references to the literature. 

+~I -,~-Superconductors--~ 

(o) (b) 

Fig. 4. (a) The magnetic field of a magnetic monopole inside a superconductor; (b) the 
magnetic field lines between monopole and antimonopole inside a superconductor. 
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flux provides a nice justification for the known spectrum of mesons and 
baryons that possess zero triality. That is, if quarks are endowed with SU(3) 
"magnetic" charge in this model, they will be bound together by strings of 
"magnetic" flux and only the known hadrons will exist. (Exotics like diquarks 
are automatically ruled out.) 

These "magnetic" confinement ideas are very nice; but are they relevant 
for quantum chromodynamics (QCD) (Marciano and Pagels, 1978). the 
popular non-Abelian color SU(3) gauge theory of strong interactions? In 
QCD scalar fields are absent and local gauge invariance is unbroken; so the 
superconductor analogy seems inappropriate. Furthermore, the possibility 
that quarks carry "magnetic" charge does not mesh well with the property of 
asymptotic freedom, which tells us that quarks behave as free particles at very 
short distances (an experimentally observed property). Certainly, the con- 
nection is unclear; however, two possibilities are being pursued, which we 
wilI briefly outline. 

Perhaps QCD exhibits "electric" rather than "magnetic" confinemeiat. 
That is, electric flux from quark sources may be funneled into connecting 
vortex like configurations between them. Certainly, the self-interacting 
character of the massless QCD gluons may favor this kind of configuration 
over the conventional radial Coulombic field of electrodynamics. Such a 
possibility would give rise to a linear confining potential and thereby also 
provide a basis for the string picture of hadrons. If "electric" confinement is 
the answer, then it must result from some unusual aspect of the QCD vacuum 
which gives rise to this electric Meissner effect. Attempts to uncover such a 
property have invoked merons (Callan et al., 1977), "magnetic" monopole 
pairs (Mandelstam, 1975) (analogs of Cooper pairs), and vacuum degeneracies 
(Gribov, 1977; Bender et al., 1977). The connection and correctness of these 
various approaches is under active investigation. 

A second possibility is that QCD actually does exhibit "magnetic" con- 
finement, at least in the following sense: The SU(3) gauge theory, spon- 
taneously broken by Higgs scalars, that we previously mentioned may be the 
dual transform of QCD. That is, the soliton configurations of one theory may 
be the elementary particles of the other. Ideas along these lines have been 
recently advanced by 't Hooft (1977). 

4. THE 't HOOFT-POLYAKOV MAGNETIC MONOPOLE 

The possibility that finite-energy stringless magnetic monopoles could 
occur in non-Abelian gauge theories was first observed by 't Hooft (1974) and 
Polyakov (1974). They found that such objects appear quite naturally in these 
theories as three-dimensional topological solitons. (! n using the word soliton, 
we invoke a physicist's working definition: A soliton is a stable localized 
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solution to the  classical field equations which has finite nonzero energy.) 
These monopoles are stable because they possess an absolutely conserved 
topological charge ( n o t  a Noether charge) which results from a nontrivial 
homotopy. In three spatial dimensions this topological charge has the 
natural identification of magnetic charge. To illustrate how such configura- 
tions can occur, we will follow 't Hooft's example (1974). 

Consider the following SO(3) gauge-invariant Lagrangian density which 
describes the interaction of gauge field and Higgs isovectors: 

~ ( x )  = - � 8 8  a~v + � 8 9  ~ - � 8 8  ~ - v 2 )  2 a = 1, 2, 3 (4.1) 

where 
F2v = O,Av ~ - OvA,  ~ + e~abCA,bA~ c (4.2a) 

D,q~ a = 0 , ~  a + e,~bcAub~ ~ (4.2b) 

This model (when fermions are added) is the Georgi-Glashow model of weak 
and electromagnetic interactions (Georgi and Glashow, 1972). It describes 
one massless photon and two massive charged intermediate vector bosons 
which obtain their mass via the Higgs mechanism. That is, the spontaneous 
breakdown of the SO(3) gauge symmetry due to the vacuum constraint 

J 

r162 = v 2 (4.3) 

leaves only a residual U(1) gauge invariance. 
The field equations that follow from (4.1) are 

DUF2~ = - e , a b C r  ~ (4.4a) 

Du nuq~ ~ = - h(d~d~a - V2)~ ~ (4.4b) 

These are second-order, nonlinear, coupled, partial-differential equations, so 
their general solution would be extremely difficult to find. 't Hooft and 
Polyakov circumvented this difficulty by employing the static spherically 
symmetric ansatz [compare with (2.10)] 

Ao" = 0 Ai ~ = ~,ijxJ[1 - K ( r ) ] / e r  2 (4.5a) 

~ = x ~ H ( r ) / e r  2 r 2 = x l  2 + x2 2 + xa 2 (4.5b) 

which reduces (4.4a) and (4.4b) to the more tractable radial equations 

r 2 K  " = K ( K  2 - 1) + K H  2 (4.6a) 

r 2 H  " = 2 H K  z + -~ H ( H  z eZv2r z) (prime means d / d r )  (4.6b) 

In addition to the pure gauge solution K = 1, H = err,  there exists another 
nontrivial finite energy solution to (4.6) which has the following behavior 
(see Figure 5): 

K,---~ ~ 1 + O ( r  2) K > O ( e  . . . .  ) 
,--,oo (4.7) 

Hr--&-6-> O ( r  2) H r~r evr  
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rH(r}/r 

Fig. 5. Behavior of the gauge and scalar fields for the 't Hooft-Polyakov monopole. 

(Notice that at r = 0 the gauge field vanishes and infinite energy is thus 
avoided.) The energy density of this soliton is localized and leads to the 
following mass formula: 

M, outo~ = M w  f ( 2 @ 2 )  c~ = e2/4,u M w  = ev (4.8) 
OI 

where M w  is the mass of the charged intermediate vector boson ( M w  ,~ 

50-60 GeV) and f ( )~/e  2) is a slowly varying monotonic function which 
satisfies f (0)  = 1; so this soliton is expected to have a very large mass 
~> 104 GeV. 

Properties of this soliton are clarified in the ~---> 0 limit considered by 
Prasad and Sommerfield (1975). In that limit, explicit solutions to (4.6) are 
known; these are 

K ( r )  = ev r / s i nh  (err )  (4.9a) 

H ( r )  = err  coth ( e r r )  - 1 (4.9b) 
Why is this soliton identified as a magnetic monopole ? To illustrate this 

attribute, 't Hooft  (1974) constructed a gauge-invariant electromagnetic field 
tensor 

1 

F,~ = ~F~% - e e~bC~D"$bDv~C (4.10a) 

~ = ~/]~l  (4.10b) 

Merely inserting the ansatz of (4.5) into this formula leads to 

F~j = - , i jkxk / er a (4.11) 

which corresponds to the magnetic field of a point monopole with magnetic 
charge Qm = 1/e. [The antimonopole with Q= -~ -1 / e  can be obtained by 
changing the sign of 4, ~ in (4.5b).] 

The topological nature of this magnetic charge was clearly illustrated 
by Arafune et al. (1975). Rewriting (4.10a) as 

Fu~ = O,Bv - a~B u - 1 , a b c ~ a a u ~ b a ~  B u - q~aAu ~ (4.12) 
e 

they noted that if B u is free of string singularities, then 

- 1  

and this current is conserved 
~*J~ = 0 (4.14) 
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The charge associated with this current does not generate a symmetry of the 
Lagrangian; it is a topological charge (not a Noether charge) 

if Qm = ~ dSx*Jo = n/e n = integer (4.15) 

and is quantized because ff is required to be single-valued (Arafune et al., 
1975). 

Before closing this section, let us describe a first-order formalism due to 
Bogomolny (1976). For static magnetic configurations A0 a = 0, the energy 
(or mass) formula that follows from (4.1) is 

= f d a x [ � 8 8  ='j - �89 = + � 8 8  = - v2) 2] (4.16) E 

This can be reexpressed as 

e = f d 3 x [ � 8 8  - , , ,j~D~r o' '  - , 'J=Dmr =) 

+ �89 + �88162 _ vz)=] (4.17) 

Then using the fact that 

�89162 = O'(�89162 ") (4.18) 

and the field tensor in (4.10a), one finds that the rest energy of a magnetic 
monopole carrying n units of charge (Q, = n/e, n > 0) is given by 

E,~ = Mwa n + f dax[�88 - ,,j~Dkr a'j - e'J"*Dmr ~) + �88162 _ vg.)=] (4.19) 

In the limit A ~ 0, the bound E~ = (Mw/a)n  can be saturated i f  

F,~ = , , j ~ D ~  o (4.20) 

Solutions to this first-order differential equation automatically satisfy (4.4) 
with ~ = 0, but the converse is not true. For example, the Prasad-Sommer- 
field solution in (4.9) also satisfies (4.20). From (4.19), we see that in the limit 
,~ --~ 0, magnetic monopoles with the same sign do not seem to interact. The 
first-order differential equation in (4.20) provides a convenient means of 
searching for multiply charged magnetic monopoles in this model, although 
at this time none are known. 

The situation just described is reminiscent of the self-duality condition 
for pure Yang-Mills theories in four Euclidean dimensions (Marciano and 
Pagels, 1978; Belavin et al., 1975) 

F~, = *F2~ F , v  = 1 ,2 ,3 ,4  
(4.21) 

* a 1 l:g'aaB F~, = ~Euv=B-- 

which automatically implies a solution to the field equations 

Dt'F2~, = 0 (4.22) 
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Actually, the correspondence between these two first-order formalisms is 
rather direct. Making the identification - A4 ~ --> ~a and assuming no depen- 
dence on x4, (4.22) becomes (4.4) with A = 0 and (4.21) becomes (4.20) 
(Marciano and Pagels, 1976). 

5. EXTENSIONS 

We conclude this brief review by mentioning some extensions of the ideas 
just discussed: 

A. Dyons. Julia and Zee (1975) have shown that the ansatz 

Ao ~ = x~J(r) /er  2 (5.1) 

is consistent with (4.5). In this way they found solutions to the field equations 
which carry one unit of magnetic charge and arbitrary electric charge. In the 
quantum theory, Goldstone and Jackiw (1976) find that the electric charge of 
these dyon solutions becomes quantized, Qayon = ne. 

B. Spin from isospin. Jackiw and Rebbi (1976) and Hasenfratz and 
't Hooft (1976) have shown that if an isodoublet scalar field is added to the 
theory in (4.1) [making it an SU(2) theory], then the bound state of monopole 
plus scalar has spin 1. This state has the statistics of a fermion (Goldhaber, 
1976). Thus one finds fermions in a theory of Lorentz scalars and vectors. 
This result is the non-Abelian analog of the well-known fact that the bound 
state of a particle with minimal electric charge and a Dirac monopole with 
minimal magnetic charge has angular momentum �89 stored in its electro- 
magnetic field. 

C. Higher-rank gauge groups. A considerable number of papers dealing 
with magnetic monopoles in higher-rank groups have appeared. Here we 
comment on only one particular result. In higher-rank groups such as SU(3), 
multiply charged (Qm = n/e) monopoles can be found which have mass 
M ,  >>. nM1 (equality when all scalar potential terms are dropped, A = 0). 
Such configurations with n > 1 are therefore unstable; they can decay by 
fissioning into the topologically equivalent situation of widely separated unit 
monopoles (Marciano et al., 1977; Wilkinson, 1977). Exactly the same 
phenomenon exists for vortices. When the Ginsberg-Landau parameter 
K = 1/(2) 1/2, vortices are noninteracting, while for K > 1/(2) 1/2 they repel. 
Indeed, in type II superconductors [K > 1/(2) 1/2] only unit vortices are 
observed, and the same is true for superfluid vortices (Marciano and Pagels, 
1978; Marciano et al., 1977). 

We have outlined only a few of the generalizations and extensions of 
't Hooft's and Polyakov's pioneering work. Other developments will be 
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discussed at  this meet ing and  fur ther  advances  will cer ta inly be fo r thcoming  
in the future.  
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